At this summer’s AAPT meeting, I spoke briefly with a few people about the idea of teachers as educational engineers. This idea started rattling around my head earlier this summer when I participated in an NSF-funded program called EngrTEAMS looking at meaningful STEM integration (I’ll be writing more about that as the year goes on). A good place to start is with what the engineering design process looks like. Just like the scientific process, it can’t really be distilled into a neat package, but the EngrTEAMS folks have a version I can live with. Moore et al. provide some of the rationale for this model of the design process in their Framework for Quality K-12 Engineering Education.
It turns out, this is also a pretty good model for how a lot of teachers develop curriculum. Just as a good engineer always starts with the problem to be solved, teachers start with the objective or standard to be addressed. During a lesson or a curriculum unit, teachers mirror the implementation and testing phases of engineering design. As part of this, we collect a wealth of data that includes classroom observations, formative assessments, student feedback, and summative assessment results, all of which we use to evaluate our teaching. We constantly cycle back to the plan phase as we revise what we are doing, whether on the fly in the middle of a lesson or over the summer when we have time for more thoughtful reflection. Teachers regularly visit the background phase, too, as we try to find out what’s working in someone else’s classroom or learn more about our content area.
This analogy can do a lot to inform how teachers (and students!) think about assessment as well as suggest a process for developing, refining, and revising curriculum. I’ll save all of that for another day. For now, I want to focus on the aspect that came up during AAPT, which is what thinking of teachers as educational engineers has to say about how we should interact with researchers.
I went to a lot of talks at AAPT that fall under the umbrella of physics education research, or PER, and noticed some patterns. The majority of the talks were only 8 minutes long, and most of that time was spent on methodology, including data analysis. This information is important and, as a teacher, knowing a bit about the methodology can help me decide how seriously to take a given study, but its the PER types who seem to get the most out of those portions. I usually have two questions: what does this mean for my classroom and how does it fit in with what I already know? Just like an engineer watches scientific research to find what will help build a better car or a smarter phone, physics teachers look to PER to find what will help us give our students a better education. Give me the bottom line and an overview of the big picture and I’ll figure out how to make it work in the classroom.