Peter Bohacek shared an interesting article with me that found students who’d had a kinesthetic experience with a bicycle wheel gyroscope not only performed better on an angular momentum assessment, but fMRI scans showed the sensorimotor parts of their brain became active while thinking about angular momentum. This validates my gut instincts that students should have lots of hands-on experiences, and I feel like I do a pretty good job of that in physics, but what does a kinesthetic experience look like in chemistry? I teach a basic chemistry course where concrete experiences are critical in developing student understanding and I think students could especially benefit from the kinds of kinesthetic experiences described in the article.

Gas laws ended up being a great place for me to start thinking about kinesthetic experiences in chemistry. Last year, I started doing a lab where students play with a sealed syringe, including heating it up in a water bath and manually changing the volume. Throughout, students are able to feel the pressure difference as the plunger pushes or pulls against their fingers, giving a great kinesthetic experience we can refer back to throughout the unit.

The trick has been connecting this experience to the equations. Feeling the plunger push back when they held it at the same volume in a hot water bath was enough to convince students that pressure goes up with temperature, but a lot of them struggle enough with math that they had a hard time seeing how the qualitative relationship from the lab fit with PV=nRT; the inverse relationship for volume was enough tougher for students to make sense of! My students needed more of a bridge between the kinesthetic, qualitative experience and the math.

That’s where Pivot Interactives came in this year. As part of the Chemistry Fellows program, I’ve been piloting their new chemistry resources in my classroom and this seemed like a perfect opportunity. Since Pivot Interactives has several activities where students can collect data for the ideal gas laws and we’ve been working a lot on interpreting graphs this year, I was hoping that collecting their own data could serve as a bridge between the kinesthetic activity and the math.

After some discussion on the qualitative results with the syringes, including developing an operational definition of pressure, we fired up the computers to collect some pressure and temperature data in Pivot Interactives. Students got a nice, linear graph and I had them turn the slope into a “for every” statement to describe how much the pressure went up for every 1 degree of temperature increase. We also had a lot of discussion about how these results fit with what they’d observed previously with the syringes. By the end of the hour, students were on board that P = “stuff” x T and could clearly explain how their experience with the syringes supported that result.

Volume was a little trickier. A lot of my students haven’t taken geometry and finding the volume of a cylinder was a big barrier for a lot of them on a lab earlier this year, so I was nervous about having them find the volume of the bubble. We did some whole-class discussion on what we could measure that would tell us about the volume of the bubble, and students readily settled on the diameter as a good option. The graph of pressure vs. volume still looked pretty inverse.

The discussion was also trickier. Students had felt the changes in pressure as they changed the volume of their syringe, so we had to spend some time working through how that connects to the Pivot Interactives video showing changes in volume as the pressure drops. It took some time, but students were eventually able to make the connection. It also took a little more for my students to make sense of the graph. Since we don’t do linearization in my chemistry course, we weren’t able to make a “for every” statement about the graph, but students were able to recognize that as pressure went down, volume went up and eventually get to V = “stuff” / P.

After this series of labs, it was time to start working some problems. Last year, students struggled through gas law calculations and had a very difficult time reasoning through whether their answers made sense. This year, students frequently talked about their experiences with the syringes when making sense of a problem and were able to breeze through the calculations. I also saw the difference in much higher scores on the end-of-unit assessment.

Using the kinesthetic lab to introduce gas laws wasn’t new to me, but Pivot Interactives gave me new tools to build a bridge between what students experienced directly and what the calculations described. This proved to be an important piece in developing my students’ understanding of the material.

**References**

Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. *Psychological science*, *26*(6), 737-749. Retrieved from https://journals.sagepub.com/doi/pdf/10.1177/0956797615569355?casa_token=QLM-ZEKB0W4AAAAA:J0rTJejG7a3LBukCFyZNaJtDjV6FgYyCDZu-zy_B7ugrpUQJd8qAj0uaRF8iM7MslTLsZg_vCzQ